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ABSTRACT

The problem of radiowave propagation over irregular terrain is solved by using the

wide angle parabolic equation. The terrain is characterized by its height profile and its
ground constants (here conductivity ¢ — ). We consider horizontal polarization and
treat the ground as perfectly conducting (PEC) to simplify the formulation. This thesis

uses a piece-wise conformal transformation to flatten the irregular terrain. The equations
are solved by the split-step Fourier algorithm. A Hanning window is used in both the
spatial and wavenumber domains to contain the computational domain. Effect of some
numerical parameters such as the horizontal step size, and height of the computational
domain on the accuracy of the solution is investigated. The numerical results are compared

with available results for some typical propagation problems.
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L. INTRODUCTION

A. BACKGROUND

Radiowave propagation over irregular terrain and in the presence of ducts is an
extremely important topic in ground-to-ground as well as in ground-to-air
communications. Similarly, the ability to predict radiowave propagation over irregular
terrain has a significant impact in determining target detectability in a radar system. The
physics of propagation is affected by ever-changing atmospheric conditions and by
complex terrain features on the ground. The path between the transmitter and receiver is
often obstructed by natural or man-made obstacles, such as hills, buildings, atmospheric‘
layers, rain, etc. In these cases waves can reach the receiver along more than one path and
the phenomenon is termed as multipath. In the case of atmospheric multipath fading,
super-refraction or sub-refraction can lead to abnormal radiowave propagation, which can
result in high gain or severe loss of signal. Reflection multipath fading, which is due to
interference between the direct and the ground reflected waves, depends strongly on the
terrain geometry. It is important to everyone involved with communications and radar
systems to predict the electromagnetic fields due to radiating sources in the troposphere
taking into account ducting and terrain effects.

Numerous analytical methods are available for predicting electromagnetic wave
propagation, such as geometric optics, physical optics, normal mode analysis and
combinations of the above. However, a complex environment complicates the application
of some of these methods. The Parabolic Equation (PE) method has emerged as an
extremely valuable method for assessing radiowave propagation in the lower atmosphere
in the presence of ducts and over flat terrain, and for predicting radiowave propagation
over sloping irregularities. One advantage of the parabolic Partial Differential Equation
(PDE) is that the field at any location can be computed in terms of the field at a previous
location. However, this would be accurate only when the waves propagate predominantly
in the forward direction. This is approximately met in many propagation problems and is

often assumed.




B. OBJECTIVE

In this thesis we adopt a wide angle parabolic equation due to Thomson-Chapman
[Ref. 1] to predict radiowave propagation over an irregular terrain and in the presence of
ducts. We consider horizontal polarization and treat the ground as perfectly conducting
(PEC) to simplify the formulation. In practical situations this assumption will have minimal
effect for frequencies in the VHF band and above. The key feature of this thesis is to use
piece-wise conformal transformations to map the irregular terrain into a flat one and use
known techniques available for flat terrain. It is in the transformed space rather than in the
physical space that the parabolic approximation made. Chapter II presents the derivation
of the governing parabolic equation and the formulation of the conformal mapping.
Chapter III details the generation of mesh in the transformed space and the numerical
procedure for solving the PDE. The accuracy of the numerical solution is examined in
Chapter IV. This includes a study on the effects of using different numerical values for
various important parameters (e.g., step size, maximum height) on the accuracy of the
solution and validation of the numerical results with known solutions for typical

propagation problems. Recommendations and conclusions are presented in Chapter V.




II. FORMULATION

In this chapter we present theory on the governing parabolic equation and
conformal mapping. Figure 1 shows a horizontally polarized dipole placed over an

irregular, PEC terrain. The terrain is characterized by its height profile and its ground
constants (here the conductivity ¢ -« ). We wish to solve the fields at a point over the

ground in the presence of irregularities and ducts. We consider a 2-dimensional case

where the source, geometry, refractivity profile, and all fields are y-invariant.

Tropospheric Boundary z=zmax

|

Initial Range : X
4 |
|

| Source

o

PEC Ground

Figure 1. A source producing fields over an irregular terrain.

The terrain geometry is specified by means of discrete points, and straight line
interpolation is assumed between the given data. The parabolic equation we present has to
be finally solved numerically using either finite difference or Fourier transform approach.
Both of these methods work best in a rectangular domain and a Cartesian mesh. Because
the lower boundary is irregular, we cannot adopt a Cartesian mesh without discarding or

adding points in going from one range step to the next. To avoid this situation, we will use




a coordinate transformation that will flatten the bottom boundary. Although there are
multitudes of transformations available [Ref 2], we have decided to use conformal
mapping in our case. The advantage of using a conformal mapping is that it preserves the
Laplacian operator without introducing undesirable cross-terms. This will be particularly
advantageous when split-step Fourier transform approach is used to solve the PE. In this
thesis, we use the split-step Fourier transform approach to solve the parabolic equation

due to its superior computational perfomance. Our development parallels that of [Ref, 3].

A. WIDE ANGLE PARABOLIC PARTIAL DIFFERENTIAL EQUATION

Figure 2 shows the coordinate system used in the thesis.

z
tsource (r,0,9)

& earth's surface
~—_ /

~N

Figure 2. Earth-centered spherical geometry.

The starting point for our formulation is the earth flattened Helmholtz equation for
the scaled field V [Ref. 4]:

VEV+E(1+2m)V =0 (1)

where V(x,2)=/xsin0 E4(x,z) for horizontal polarization, Ey being the azimuthal

component of the electric field, and (r,8,) are the usual spherical coordinates. The center

of the coordinate system is at the center of the earth and angle 0 is measured from the




vertical line joining the center and transmitter location. The transmitter is assumed to be

located at ¢=0 (Figure 2). Furthermore, k, = [€,1, , is the free space wavenumber,
x=rsin@ is the range variable, z is the height variable, and m(x,z)=(n-1+z/a ) is the modified
refractive index of the atmosphere having an actual refractive index n, where a, is the
radius of the earth. In this chapter we include only the final details. Complete details can
be found in [Ref. 5].

W=w(©)

—

conformal mapping

W- plane € —plane
W=x+iz C=E&+in

Figure 3. Transformation from W-plane to {—plane.

Under conformal mapping, [ Fig. 3], equation (1) is transformed to:
2 / |
VgnV+k§lW(§)|2(1 +2m)V'=0 . 2)
On expanding the Laplacian operator, equation (2) can be rewritten as

2 2 /
%g7v+;_¥+kg|w OI*Q+2myv=0, 3)

where | ()| is the Jacobian of the transformation and is given by




l—sin(%%) v

wQI=[—=X @
l+sin(2)
Substituting V=Ue™°% equation (3) can be simplified to:
ouU .
oE ko(Q-1D)U (%)
_ 1 5% 1 :
with Q-l—k2 on? + m , and we have made the reasonable assumption
o

1 82
(1+ 1+;(2)—¥)

/
that | ()|~ 1. For the transformation considered in this thesis, this is true everywhere
except near points P and Q of Figure 5.

B. CONFORMAL MAPPING

1. Conformal Mapping Approach
A conformal mapping can transform an irregular polygonal shape into a
rectangular one. We use a series of piece-wise conformal maps to transform the piecewise

linear terrain to a flat one as shown in Figure 4.

i n
Al B' Cl Dl A ,
' A ! ! '
o' 0O B C D
—
E —> >
O A B ¢ b»p % O""A B ¢ » g

Figure 4. Terrain flattening.




For example, we conformally map the polygon AABBA shown on the left to a
corresponding rectangle shown on the right. Because the slope is different from one
segment to the other, the mapping is also different. Detailed derivations of the mapping

are given in [Ref. 5]. Here we present only the final results.

2. Analytical Formulation of the Mapping
Consider the transformation W=f({) between the W=r+iz and {=£+in} complex

planes as shown in Figure 5.

Ar Ar
R S RI Sl
Zy
(172 —v)n
Zi k
AN
Qrj z) E=—Ar/2
P —Y > /
(rj-l’ Zj-l) (12 +v)m p' £ Q'
W - plane € — plane
W=r+iz C=&+in

Figure 5. Piece-wise conformal mapping.

For the sake of simplicity we assume that the points R and S are at infinity. The
mapping is given by the Schwarz-Christoffel formula [Ref. 3]:

€2
Ar .
W=Wp+Tgé€ v I dh.
Vv

L i (6)
0 A2 (1-2)2

1, . 76
where CZZE(Sln(E)'H).




With reference to Figure 5, we define the slope prameter v as

1 Az 1 1
v (3, g @)

It is asumed that positive angles are measured in the counter clockwise direction. Points

on the line PR’ are mapped to the points on the line PR through:
21 = Zj1 + FI(;y) ®

where as points on the line Q'S' are mapped to points on the line QS through:

Ar
Zy = Zj+ 1 J(u-v) ©
_ 2, ™M A v
where u= tanh (——2 Ar) =To’ and

U
dA
Juv)=| —2—
0

Accurate formulas for computing J(u;v) are given in [Ref. 5].




III. SOLUTION PROCEDURE

In the previous chapter we presented the underlying equations for the computation
of fields over irregular/flat terrain and ducting conditions. In section A of the present
chapter, we start with the generation of mesh points in the physical space. In section B, we
continue with the numerical implementation using the split-step Fourier (SSF) algorithm

for the final computation of the fields.

A. GENERATION OF THE TRANSFORMED SPACE

It is clear from equations (8) and (9) that a uniform mesh m=kAn in the
transformed domain maps to different distribution of points on the vertical lines PR and

QS. Furthermore, the distribution of points is dependent on the slope parameter v.
Therefore, in going from one range step to another, the distribution of points on the right
side of the previous step will not coincide with the distribution of points on the left side of

the present step. This is illustrated in Figure 6 for v =0.25, An =2 and Ar = 25 m, where

66.004
64.004
50 '5189 z=zmax=50m
48 49.86
46 47.81
45.76
A 4
18 19.6
16 v
14 15.99
12
106Y 11.3
8
6
4
2 /4

220 le 25 m3ke— 25 m3|

Figure 6. Distribution of points about a slope discontinuity.




points just to the left of triangle base are indicated by circles and points to the right of it by
inverted triangles. Clearly interpolation or extrapolation of data is needed before the field
values calculated at one range can be used as input for the next step. In this thesis, we use

rational approximation, [Ref. 5] to do the desired interpolation.

B. NUMERICAL IMPLEMENTATION USING THE SPLIT-STEP FOURIER
(SSF) ALGORITHM

Consider the parabolic partial differential equation given in equation (5). We
would fike to implement the equations by using the SSF algorithm. Figure 7 shows field U
on a given vertical line. We would like to predict the field U, on a subsequent line spaced

Ar from the original line.

U+ U-

7777777777777777. > n=0
&,
T~

~
- d

Ar

Figure 7. Marching in range.

To solve the parabolic equation, the following Fourier transform pair is used in the

transformed domain:
UE.p)=FU) =_L UEn) e?" dn (10a)

10




U =FO) = 5 [UE.p) ePdp (10b)

The boundary condition U(£,00=0 for horizontal polarization implies that

U(E,—m)=-U(,n), n>0, and U E,-p)= U (€,p), p>0. Using equation (10a) in equation
(5) and making use of standard 'splitting of operators' [Ref. 2] we have:

-~

U, =e U (11)
h U The field in the spatial domain is obtained by i
where = T/ . c (S m € Spatia omain 1S obitamne y mverse
ko, +Jki-p? P

transformation and correcting for refractive effects:
U+ — eikomArFI[e_iAF[U_]] ’ ‘ (12)

In computing the ordinary Fourier transform pair, we use a N-point FFT. Let us
assume that the various quantities are band limited over p_, < p < p,,, , and that the
transform is evaluated at p=0, Ap, 2Ap, ...(N-1)Ap where Ap=27/(NAz). Positive

wavenumbers occur at p=Ap, 2Ap,....... ,(N/2-1)Ap while negative wavenumbers occur at
(N/2+1D)Ap, (N/2+2)Ap,......... , (N-1)Ap. The value (N/2)Ap corresponds to both +p__ and
“Poa We use a Hanning window to contain the computational domain at the top. The

Hanning window is given by:

h 1 ,0sn< ¥ 3
_ . 1
(n) Sinz (4}1;n) , ’;’»SA/ ( )

We use it both in the spatial and wavenumber domains. A mirror image of h(n) about n=0
is used for negative wavenumbers. Note that the Hanning window forces a gradual rolloff
to zero over the last quarter of the domain. With the use of the Hanning window the

solution of the parabolic equation can be written:
U, = e*m F-1h(n)e “FIh(n)U_]] (14)

11




As we mentioned at the begining of this chapter, because consecutive steps are
taken in different transformed spaces, the calculated field at the right side of one range
step cannot be directly used, in general, as input to the next step. For example, at the
junction between flat and sloping terrain, points are uniformly distributed over a flat
surface, but unevenly distributed over the sloping terrain. As mentioned previously, we use
the rational approximation to calculate the field f(z) at a desired point z, in terms of the

fields f ,f, and f, at positions z , z, and z respectively as shown in Figure 8.

Figure 8. Field interpolation.

The field is interpolated as:

J@) =(fo +ai1(z—2,))/(1 + b1(z - z,)). (15)
where a1 = (fos- —fos)(fs —f-), b1=(=—s)/(fs—f) and s_=(f, —f)(z0-2),

S+ = (fs = fo)lz+ - 20).

12




IV. RESULTS

Having introduced the basic theoretical background, we now present the numerical
results using the developed algorithm for several practical cases of radiowave propagation.
We start with the prediction of propagation factor (excess loss over the free space case)
over flat earth, with and without a duct. We compare our results with the exact solutions
or with results available in the literature. The next case we consider is that of propagation
over spherical earth in a non-refractive atmosphere. Finally, we present our solution for
propagation over a knife-edge shaped obstacle. We use this terrain irregularity to
comment on the overall accuracy of the method and its dependence on parameters, such as
the step size for the marching and the maximum height chosen to truncate the

computational domain.
A. PROPAGATION OVER A PEC PLANE

Consider a transmitter and a receiver at a height of 5 meters above flat ground and

separated by 1 km , as shown in Figure 9.

N P B

0
x=1 km

Figure 9. Propagation between two stations A and B, both of which are stationed over

perfectly conducting ground.
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~ In our numerical approach, the propagation factor, PF, is obtained from the

normalized field, V, as [Ref. 6]
PF =10log(IV1%xA,) (16)

where x is the horizontal from the transmitter. A positive (negative) value of propagation
factor implies gain (loss) with respect to propagation in free space. The exact solution can

be obtained from image theory [Ref. 7, p. 144]. The expression valid in the far-field and

for x >> hH is PF=|E/E,|=2sin(kohcosB), where cos 0=H/JH*+x2 . h is the
transmitter height, and H is the receiver height. The transmitter placed at x=0, z=5, where

X, z are in meters. The frequency of operation is 1 GHz. We choose N=1024 , Az=An=
=0.15 m and Ax=Ar=5 m. The height of the upper boundary is z_.. =16.5 m. The electric
field is determined from the source line up to a distance of 1 km.

The variation of the propagation factor versus the horizontal distance is plotted in
Figure 10. It is seen that there is a very good agreement with the image theory solution.
For the first 50 m, the numerical solution differs slightly from the known solution. This is

due to the breakdown of the condition x >> h, H in the image theory, far-field formula.
B. PROPAGATION OVER A PEC PLANE IN THE PRESENCE OF DUCT _

Next we present the numerical results for radiowave propagation over a-PEC

plane, in the presence of a tri-linear duct [Figure 11] specified by

340+0.1182 0<z<135
M(z) =< 499.03-1.06z 135<z<150 (17)
32233 +0.1182 z>150

where z is in meters and M =m x 10°. This is a surface elevated duct with AM=16 and
Ah=150 m, where AM and Ah are defined at Figure 11. The minimum frequency (cut off
frequency) required for propagation in the presence of this duct is 217 MHz. In our case
the frequency of operation of 3 GHz is well above this cut off frequency. The height of the

transmitter is 30 m and the maximum height is chosen to be z max =212 m. We choose

14
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Figure 10. Propagation factor versus the horizontal distance for a source, placed at a height of

5 m. Flat earth, =1 GHz , Ax=5 m and H=h=5 m.
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Figure 11.Tri-linear surface elevated duct.
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Figure 12. Propagation factor versus the receiver height at a range of 40 km in the presence of a tri-linear
duct. Flat earth, transmitter height =30 m, £ =3 GHz.
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N=512, Dz=2 m and Dx=200 m. Figure 12 shows propagation factor versus the receiver

height at a distance of 40 km. A favorable agreement with [Ref.6, Figure 3] is obtained.
C. PROPAGATION OVER SPHERICAL EARTH

Figure 13 shows a transmitter and a receiver located beyond the horizon over

spherical earth. We consider transmitter and receiver antennas at heights of 10 m each.
Distance to the horizon, d; , from each station is \/2AR. , where R, is the effective radius
of the earth equal to 6375 km. In our case d, =11.3 km. The situation described above is

equivalent to the one where radiowaves propagate over flat earth but in the presence a

modified atmosphere described by modified index

m(z) = (n—1+2a,) (18)

where a. is the radius of the earth, and we choose the refractive index, n, equal to 1. We
use the equivalent model in our numerical calculations.

=1 m=z/a,

transmitter receiver transmitter receiver

U i )

d=10 km

Original Problem Equivalent Problem

Figure 13. Propagation over spherical earth.

We consider a frequency of 300 MHz and treat the earth as a PEC. The exact solution to
the problem can be obtained by using the mode theory [Ref. 8]. Our case pertains to the

case of low antennas where the heights are less than the critical height h,, defined by

18




h.=3003 ,A, inm. (19)

In our case h=30 m at =300 MHz. The distance d, must satisfy: A d > 2 h H, meaning
that the two stations must be at least 200 m apart. We use N=1204, Ax=50 m and Az=0.5
m. This, places the maximum height at z__=255.5 m. We solve for the propagation factor
as a function of the horizontal distance using our model and compare the result with the

exact solution [Ref 8]

w p-itng
PF =|EIE,| =2 [2xC | ,51'612_1" FuWf D)) (20)

where & = [koRe]g(e,c —1), € =¢-ic, where ¢, is the relative permittivity and o, is the
1

relative conductivity, £ = sd, s=[k,/R2]3 ,t, = complex numbers which depend on §, and

f, (h), f,(H) are height gain functions for the n-th mode (term). For low antennas f, (x) is

independent of n and is given by f(x) = 1 +ik,x e, — 1 . The contants T, are given as in
Table 1:

n T,

1 |1.856e"™?

2 |3245¢™3

3 |a382e™?
>3 |0.5[3n(n+0.25) % ™

Table 1. Mode numbers 1_ for =0 ,(PEC).

In Figure 14 we plot the propagation factor versus the horizontal distance d for a
range up to 10 km. There is a very good agreement with the modal solution, beyond the

first 400 m. It was already mentioned that the distance between the two stations has to be

19
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Figure 14. Propagation factor versus horizontal distance over spherical earth, £ =300 MHz, Ax=50 m.
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greater than 200 m in the modal solution, which explains the disagreement for the first few

hundred meters.
D. PROPAGATION OVER PEC KNIFE-EDGE

The final example we consider is that of propagation over a knife edge on a

conducting plane. Consider a perfectly conducting knife-edge of height 25 m, as shown in

Figure 15.
receiver
height
25m
h=3m
/] kA B
LTS IL YA A ST A A A A LTS SIS H S A o o A o A o L o o A o A o A 0 A o A o o o A A A A . 1 A S A A T A A 4 A A A A A A A A T YT S A A AL Ao T s

Figure 15. Perfectly conducting knife edge between the transmitter at A and the receiver
B, both of which are on perfectly conducting ground.

We compare our numerical solution with a four ray model of knife edge diffraction
theory [Ref. 9]. The two stations are at distances d, and d, from the plane of the edge. We
choose d,=d, =500 m. In the parabolic equation computations, we replace the knife edge
with a triangular hill having a base of 50 m (Figure 15). The source is placed at a height
of 3 m and we would like to determine the propagation factor as a function of receiver

height. We choose a maximum height of 255.5 m, and the other parameters as: N=1024,
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Az=0.5 and Ax=1 m. The frequency of operation is 300 MHz. The numerical results are
plotted in Figure 16, along with the four-ray solution, [Ref. 9]. There is an excellent

agreement between the two plots.

E. PARAMETRIC STUDY OF THE SSF ALGORITHM USING CONFORMAL
MAPPING

We use the knife edge irregularity to show the dependence of the solution on the
following parameters: the horizontal step size and the maximum height chosen. We choose

three different heights, each of which corresponds to the following values of N (with fixed

vertical step size Az=0.5 m): N=256, 512 and 1024. The values of height are: z_ =63.5,

127.5 and 255.5 meters respectively. For each of these heights, we create three sets of
plots, for three different values of the horizontal step sizes: Ax=35, 2.5 and 0.75 meters.In
Figures 17, 20 and 23 (Ax=5 m), we discuss the effect of the maximum height chosen for
fixed Ax and it is seen that z_ =76.5 m (Figure 17) is certainly not high enough. Only if
we use higher a computational domain (Figures 20 and 23) do we obtain a solution which
has resemblance with the four-ray solution. In the second set of Figures for a fixed Ax=2.5
m, (Figures 18, 21 and 24), again we conclude that the higher the z ___the better the
agreement between the numerical and the four ray solution. In Figures 21 and 24 (z_,
equal to 125.5 and 255.5, respectively) we start to obtain a solution similar to the four-ray
theory solution, but not yet an accurate one. Finally in Figures 19, 22 and 25, for the fixed
horizontal step size Ax=0.75 m, we see that the solution with Z.. of 1255 mor 255.5m
(Figures 22 and 25) produces very good agreement.

Next we discuss the effect of the horizontal step size Ax for a fixed vertical step
size Az and z_,, (N). In Figures 17 through 19 the maximum height is 76.5 m and Az=0.5
m. We see that even for very small Ax, an acceptable solution is not obtained. In this case
the solution is dominated by the height parameter (not convergent yet). In Figures 20
through 22, we use z,,=125.5 m and Az=0.5 m. It is seen that as we decrease the
horizontal step size a better agreement with the four-ray solution is achieved (Figure 22).

Figures 23 through 25 present the results for a fixed Az=0.5 m and Z . =255.5 m. Again
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Figure 16. Propagation factor versus the receiver height at a range of 1 km. Smooth earth, the

source placed at a distance of 500 m from the edge. Az=0.5 m, Ax=0.75 m and z_,, =255.5 m.
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Figure 17. Propagation factor, PF, versus the receiver height. Az= 0.5 m, Ax=5 m and Z .. =63.5m.
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Figure 18. Propagation factor versus the receiver height. Az= 0.5 m, Ax=2.5 mand z__ =63.5 m.
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Figure 19. Propagation factor versus the receiver height. Az= 0.5 m, Ax=0.75 m and z . =63.5m
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Figure 22. Propagation factor versus the receiver height. Az= 0.5 m, Ax=0.75 mand z_, =127.5 m.
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Figure 25. Propagation factor versus the receiver height. Az= 0.5 m, Ax=0.75 m and Z,.. =2555m
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the effect of Ax is easily seen and Figure 25 shows a numerical solution with an excellent

agreement with the four-ray theory solution.
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V. CONCLUSIONS

In this thesis, a numerically efficient method to model radiowave propagation over
irregular terrain and in a stratified atmosphere, using the parabolic equation, was
implemented and tested. The parabolic equation method is a full-wave method, and
aspects such as forward reflection, refraction, diffraction, and surface wave propagation
are included. However, it ignores back-scattering. Since it ignores back propagation, it
allows for a rapid solution of the fields using marching techniques along the propagation
path starting from the source. It offers an advantage compared to the ray method in that it
is valid in the shadow region where the latter method completely breaks down.
Furthermore, it is the most practical method for predicting propagation over long ranges
(thousands of wavelengths).

After presenting the wide angle parabolic equation, we presented a piece-wise
conformal transformation to map the irregular terrain into a flat one, so that known
techniques available for flat terrain can be used. The split-step Fourier (SSF) algorithm
was used in the computational domain to solve the parabolic PDE. A Hanning window
was used both in the spatial and wavenumber domains. Although very small step sizes
were used for marching along ranges of several kilometers, the method is very time
efficient. Horizontal polarization was considered and the ground was treated as a perfect
electric conductor (PEC) to simplify the formulations. This assumption will have minimal
effect in practical situations and for frequencies in the VHF band and above.

Numerical results to predict radiowave propagation for several practical cases
were computed and validated using the results available in the literature. These included
both propagation over flat terrain in a refractive and a non-refractive atmosphere,
propagation over spherical earth, and propagation over a PEC knife edge placed on a
perfectly conducting plane. Excellent agreement was observed and demonstrated for all
cases. Also included, was a parametric study of the algorithm used, to show the effect of

the horizontal step size Ax and the maximum height z

max 2

for a fixed vertical step size Az.
The need for larger heights and smaller horizontal steps was demonstrated.

The model presented in this thesis can be applied to communication problems or

35




for target detection where prediction of propagation of HF/VHF signals over
inhomogeneous and irregular terrain is highly desirable. Horizontal polarization applies
mainly for radar systems. For this case, signals received from a target depend on the direct
wave and the ground reflected wave. The latter ray's path depends on the terrain
roughness and ground constants. It is also important to assess the atmospheric conditions.
The numerical model developed in this thesis provides a useful tool for predicting the

performance of a radar or communication system before its final development.
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